

Gestione del follow-up a lungo termine del paziente trattato con CAR-T

GIORNATE EMATOLOGICHE VICENTINE 2025

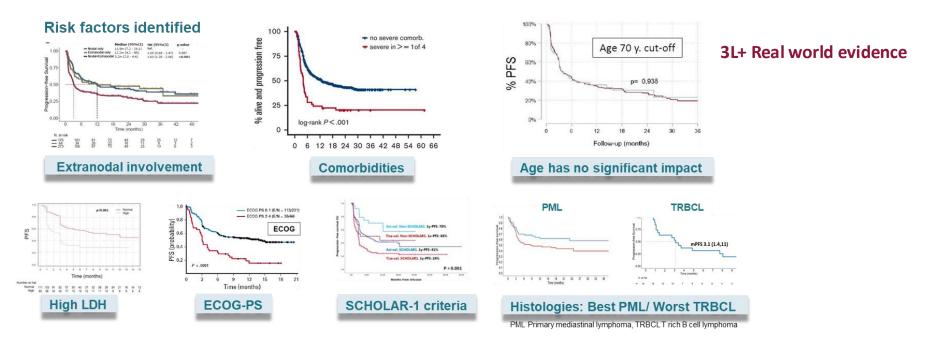
R. Di Blasi Hémato-Oncologie, Hôpital Saint Louis, Paris

Background

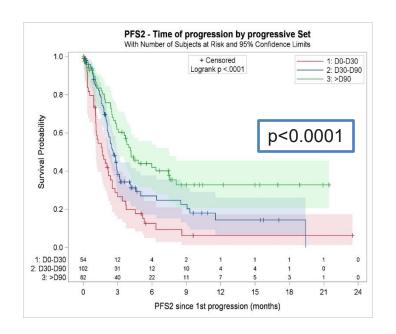
- CAR-T are expanding: lymphoid malignancies, autoimmune diseases, solid tumors
- Early post-infusion care -> standardized (CRS and ICANS management, scores, algorithms...)
- Long-term follow-up still not clearly defined

Different aspects seem crucial

- Logisitcs: Coordination between CAR-T centers & referring hospitals
- **Disease-specific monitoring**: relapses, even late failures
- Other toxicities (cytopenias, cardiac toxicities)
- Infection prevention & management
- Second cancers
 - Management of NRM
- Psychosocial, social & economic aspects
- Fertility

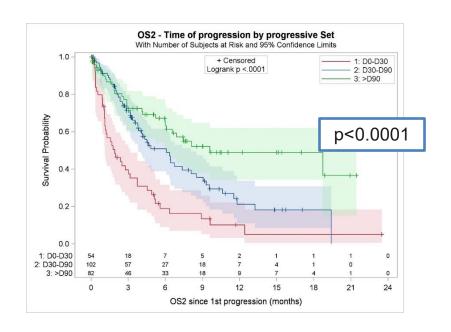

Logistics of Follow-Up

Different among countries, centres...

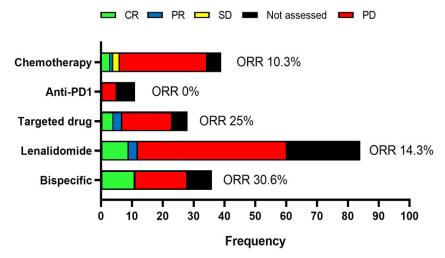

- First 3 months: ideally by qualified CAR-T center
- After 3 months: discuss shared care with trained centers
- Follow-up required up to 15 years
- Protocols differ by lymphoma, myeloma, ALL

Hematological Monitoring

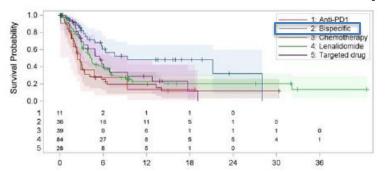
Disease-specific surveillance

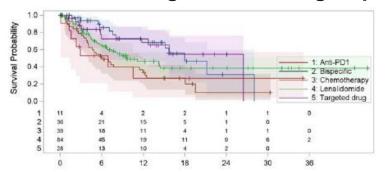

Survivals of patients at failure after CAR T-cells for DLBCL

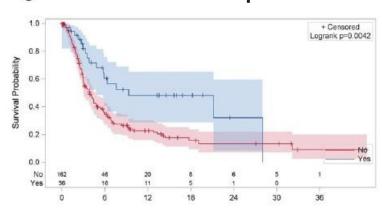
• D30-90: 2.6 months (95% CI, 2.1-3.0)

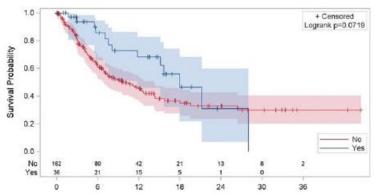

> D90: 4.2 months (95%CI, 2.9-7.5)

- D0-30: 1.9 months (95% CI, 1.1-3.2)
- D30-90: 6.1 months (95% CI, 3.8-8.1)
- D>90: 9.6 months (95%CI, 6.0 Not reached)


CARLATE: late failures after CAR T-cell treatment


- Nationwide, real-world, registry-based study (DESCAR-T, France). July 2018 March 2024
- 747 (49%) relapsed \rightarrow 298 (39.9%) were late failures (>3 months post-infusion)
- Median age: 62 years; 69% DLBCL subtype.


CARLATE: late failures after CAR T-cell treatment


PFS-2 and OS-2 of late failure population according to treatment group

c PFS-2 and OS-2 of patients treated with bsAsb vs other therapies

F Erbella et al, Blood Advances 2025, In press

Prognostic factors in L2

Retrospective single-center study (Saint-Louis University Hospital, Paris) **59 patients** with R/R 2L LBCL treated with second-line axi-cel or liso-cel (2022–2024).

Efficacy: 3-month CAR T-cell failure occurred in **30.5**% of patients. Six-month **EFS** was **58.9**% and **OS 84.5**%. Outcomes were similar for axi-cel and liso-cel.

Toxicity: Cytokine release syndrome (CRS) was more frequent and severe with axi-cel, leading to more ICU transfers.

Prognostic factors in L2

Outcome	Independent Predictors		
3-month CAR T-cell failure	Progressive disease (PD) at infusion, ferritin ≥400 μg/L, high BMI		
Event-free survival (EFS)	High BMI, ECOG PS ≥2, total metabolic tumor volume (TMTV) >80 mL		
Overall survival (OS)	Age ≥75 years, high BMI, ECOG PS ≥2		

- Elevated CRP and LDH correlated with worse outcomes (univariable).
- Low effector-to-target (E:T) ratio (CAR T expansion normalized by tumor volume) strongly predicted treatment failure and poor EFS.
- Most failures occurred within the first three months post-infusion, emphasizing the importance of **early tumor control** and **patient** selection.
- **BMI's negative impact** on outcomes contrasts with some prior reports, suggesting complex metabolic influences on CAR T-cell function.

(Persistent) Cytopenias: ICAHT

Bi-phasic

- -1st lymphodepletion
- -2nd immuno-modulated (similar to post Rituximab neutropenia)

Fried et al. Bone Marrow Transplant. 2019

Up to 38% treated pts

- Thrombocytopenia and LD
- Early CRS

Nahas et al. Leukemia and Lymphoma 2019

Non B cytopenia:

30% at M1, 10% at 1 y (axi-cel)

Logue et al. Haematologica 2020

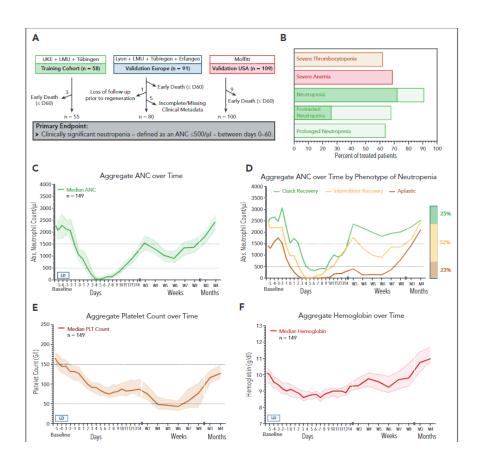
Baseline Features	0 Point	1 Point	2 Points	
Platelet Count	> 175,000/µl	75,000 – 175,000/µl	$< 75,000/\mu I$	
Absolute Neutrophil Count (ANC)	> 1200/µl	< 1200/μl	-	
Hemoglobin	> 9.0 g/dl	< 9.0 g/dl	-	
C-reactive protein (CRP)	< 3.0 mg/dl	> 3.0 mg/dl	-	
Ferritin	< 650 ng/ml	650 – 2000 ng/ml	> 2000 ng/ml	
Low: 0-1 High: ≥ 2				

CAR- HEMATOTOX score

Bone marrow (PLT, Hb, ANC) + inflammation (ferritine, CRP), and tumoral micro-environnement

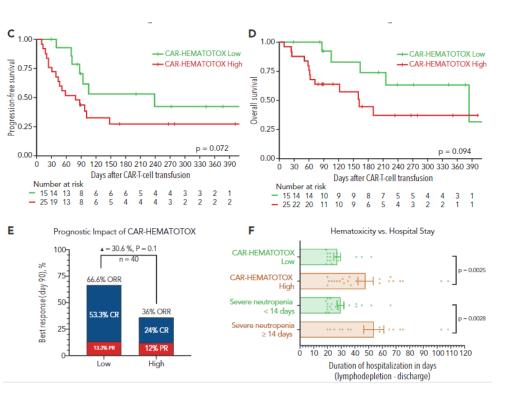
After day 21, grade ≥3 cytopenia:

neutropenia 30%-38%, thrombocytopenia 21%-29% anemia 5% -17%


Rejeski et al. Blood 2021

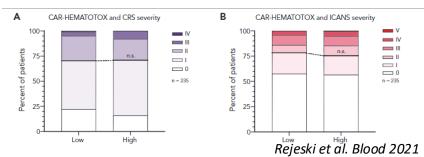
HT and ICAHT

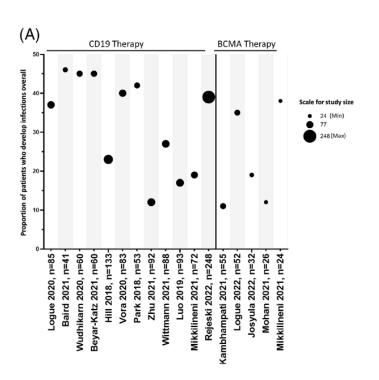
235 pts:

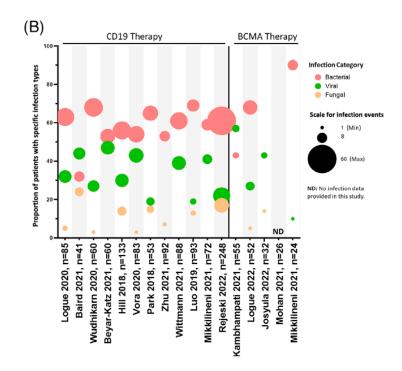

- End point: neutropenia grade IV at D60
- >3 neutropenia 91%, anemia 69%, thrombocytopenia 62%
- Median duration of severe neutropenia (ANC,500 cells per mL)
 was 9 days (95%confidence interval [CI], 8-10 days)
- No difference by CAR T-cell product

 A biphasic temporal course with intermittent recovery represents the dominant phenotype of neutrophil recovery after CAR T-cell therapy

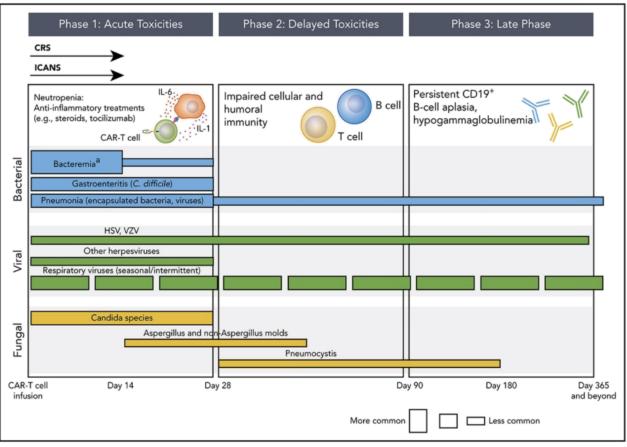
Rejeski et al. Blood 2021


HT impact on survival

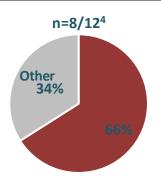

High CAR-HEMATOTOX (Before CAR T-cells)

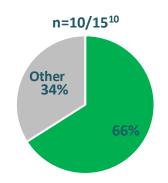

- Aplastic phenotype more frequent
- Higher incidence of pancytopenia
- Prolonged hospitalization: 54 days VS 29.5 days (p = 0.0028)
- Worse clinical outcomes: : PFS (p = 0.07), OS (p = 0.09), OR (66.6% if low risk versus 30.6% if high risk, p = 0.1)

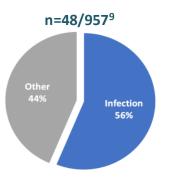
Baseline cytopenia and elevated inflammatory markers (HEMATOTOX score) are correlated with the duration of neutropenia, and survivals but CRS and ICANS severity and peak cytokine levels are not



Infectious risk


Infectious Risk




- Early (0–30 days): bacterial (neutropenia, steroids)
- Late (>30 days): viral (RSV, influenza, COVID) & herpesvirus
- Opportunistic infections: PJP, toxoplasmosis
- Infections = major cause of nonrelapse mortality

Infections are the first cause of non-relapse mortality

CAR T-cells	ZUMA-1 ¹	JULIET ²	TRANSCEND ³	Nastoupil JCO 2020 ⁴	Pasquini Blood Adv 2020 ⁵	Jacobson Trans Cell Ther. 2022 ⁶	Bethge Blood 2022 ⁷	Kwon Haematolog ica 2022 ⁸	DESCART Lemoine 2022 ⁹
Study	Pivotal trial		Post-approval Post-approval						
Product	Axi-Cel	Tisa- Cel	Liso-Cel	Axi-Cel	Tisa-Cel	Axi-Cel	Axi (173)/ Tisa(183)	Axi-Cel (134)/ Tisa- Cel (127)	Axi-Cel (599)/ Tisa- Cel (358)
Toxicity, non relapse mortality	3.7%	0	3%	4.4%	1.2%	3% at 3 mo	6% at 12 mo	7%/4%	4.9%

Inter-trial comparisons should not be made because of differences in study design, patient populations, treatment interventions, and duration of follow-up, among others. We cannot make direct comparisons or draw conclusions from one trial to another. For descriptive purposes, toxicity results for each of the studies mentioned are listed. C. Thieblemont personal communication

^{1.} Locke FL, et al. Lancet Oncol. 2019; 20:31-42. 2. Schuster S, et al. NEJM. 2018;380:45-56. 3. Abramson J, et al. The Lancet.2020;396:839-852. 4. Nastoupil LJ, et al. J Clin Oncol.2020;38:3119-3128. 5. Pasquini MC, et al. Blood Adv. 2020; 4: 5414–5424.6. Jacobson CA, et al. Transplant Cell Ther.2022;28:581.e1-581. 7. Bethge WA, et al. Blood

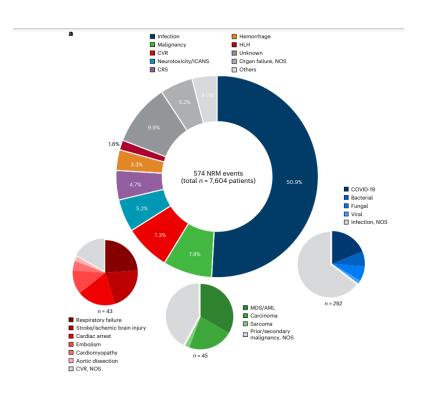
^{. 2022;140:349-358 8.} Kwon M, et al. Haematologica. 2023;108:110-1213. 9. Lemoine J, et al. Blood (2022) 140 (Suppl 1): 1859-1861. 10. Rejeski K, et al. J Immunother Cancer. 2022;10:e004475

NRM is higher in MCL pts treated by brexu-cel

Cilta-cel higer NRM =15,2% followed by Brexu cel =10,6%

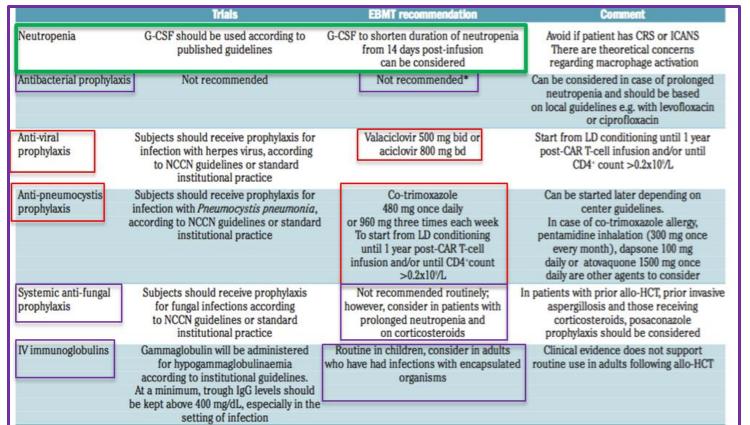
NRM: 53,4% infections, 7,8% other malignancy, 7% cardiovascular events

Infections and toxicity higher in RWE

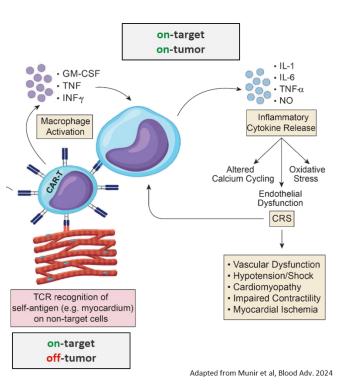

nature medicine

Analysis

https://doi.org/10.1038/s41591-024-03084-6


A systematic review and meta-analysis of nonrelapse mortality after CART cell therapy

Received: 28 January 2024	David M. Cordas dos Santos ^{1,2,3,4,11} , Tobias Tix ^{4,11} , Roni Shouval ^{5,6} ,					
Accepted: 22 May 2024	Anat Gafter-Gvili ^{3,8} , Jean-Baptiste Alberge ^{1,2,3} , Edward R. Scheffer Cliff ^{1,2,9} , Sebastian Theurich ^{4,10} , Michael von Bergwelt-Baildon ^{4,10} ,					
Published online: 8 July 2024	Irene M. Ghobrial 6 1,2,3, Marion Subklewe 4,10, Miguel-Angel Perales 6 5,6 &					
Check for updates	Kai Rejeski ® ^{4,5,8,10} ⊠					


Infection Prevention:

Prophylaxis and supplementation guidelines

JACIE/EBMT

Cardiac toxicity of CAR T-cells

Mechanisms:

- •On-target/off-tumor and off-target effects beyond CRS (Cytokine Release Syndrome).
- •Contributing factors: lymphodepletion (cyclophosphamide), systemic inflammation, and immune activation.

Incidence:

 ◆Pivotal trials often excluded cardiac patients → underreporting of cardiovascular events (CVEs).

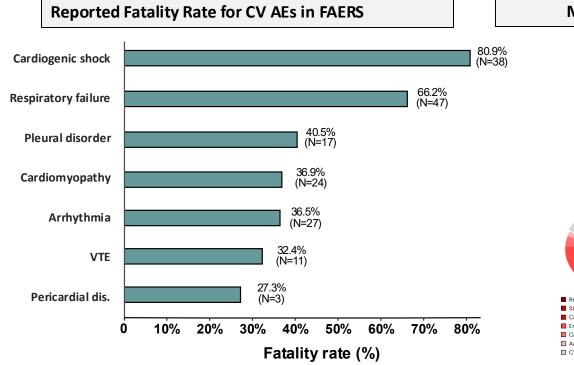
Clinical impact:

•Increased cardiopulmonary adverse events (tachyarrhythmias, VTEs, HF) in real-world data (FAERS)

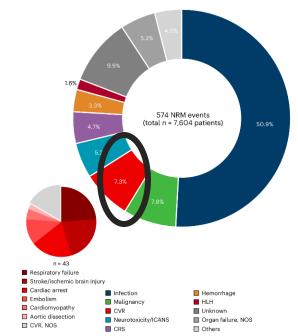
Cardiovascular Complications of CAR-T: Myocardial Injury, Arrhythmias, and Shock

Myocardial Infarction/ACS

- MI reported in **1–7**%
- Primarily Type II MI (supply-demand mismatch)
- Troponin (event triggered) elevation observed in up to 54% of patients overall and 71% in high-grade CRS¹


Arrhythmias

- Incidence: 5–12%, most commonly atrial origin
- MSK cohort (n=236)2 NHL
 - 10% develop atrial arrhythmias (primarily AF)
 - Biomarkers: BNP↑ (43%), Troponin↑ (17%), Ischemic ECG changes (13%)
 - Management: 83% needed treatment, but none were life-threatening.
 - Outcome: 91% converted to NSR, 17% had LV function decline on follow-up echo.


Other complications

- Vasopressor-requiring hypotension occurs in up to 25% of CAR-T patients
- Shock occurs in 40–50% of MACE cases, but true cardiogenic shock is rare
- Cardiac arrest & CV death are rare (typically <2%)
- Pericardial disease reported in a FAERS pharmacovigilance study³

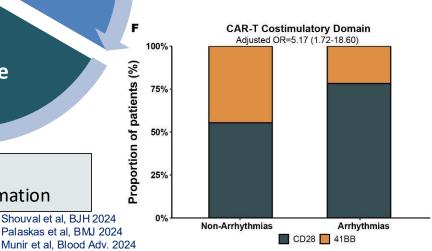
Cardiovascular AEs are a non-negligible cause of NRM

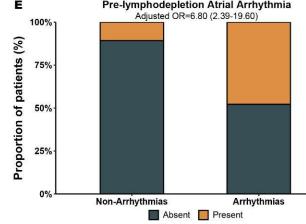
Meta-analysis of CAR-T NRM Causes

Courtesy of Roni Shouval

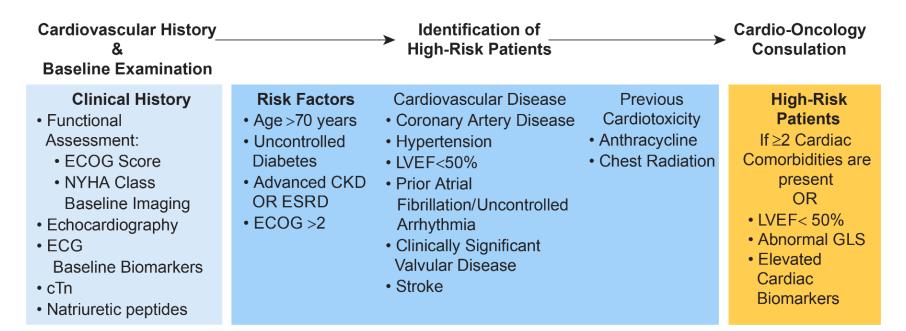
Risk Factors for Cardiotoxicity following CAR-T

Tumor burden


Systemic inflammation


Shouval et al, BJH 2024

Hx of anthracycline Hx of RT exposure Bridging Lymphodepletion CAR-T product **CRS**


CAR-T expansion

Pretreatment Evaluation

Patient Considerations prior to initiating cellular therapy

Management of High-risk Patients

High-Risk Patients

If ≥2 Cardiac Comorbidities are present OR

- LVEF< 50%
- Abnormal GLS
- Elevated
 Cardiac
 Biomarkers

Pts. developing CRS2+?

Implications

Pre-infusion

- Cardiology consult
- Additional cardiac imaging/stress testing
- Optimization of CV risk factors
- Optimize heart failure/arrhythmia control

During infusion

- Close monitoring and telemetry
- Serial biomarkers in symptomatic pts.
- Aggressive management of CRS
- Low threshold for cardiac imaging and ECG

Post infusion

- Consider echocardiography 7-14 days after infusion and at 30 days
- Cardiac follow-up ~1 month after CAR-T
- Low threshold to reintroduce cardioprotective medications including antiaggregants and anticoagulants

Secondary Malignancies (SPM) after CAR T-Cell Therapy

Long-term risks include second primary malignancies (SPMs) and therapy-related myeloid neoplasms (t-MN).

Incidence & Types:

- Overall SPM incidence ~5–15% across studies.
- Hematologic (MDS/AML/t-MN) and non-melanoma skin cancers predominate.
- Median latency to t-MN ~14–16 months; can occur as early as 3–6 months.

Risk Factors:

- Older age, higher MCV, high-grade ICANS, and pre-existing clonal hematopoiesis (e.g., TP53 mutations).
- CHIP in ~85% of t-MN cases → suggests clonal selection under cytotoxic stress.

Mechanisms & Cases:

- Rare CAR-transgene positive malignancies (e.g., T-cell lymphoma) reported.
- Regulatory agencies (FDA, EMA) recommend lifelong monitoring.

Clinical Implications:

- Genomic screening for CHIP prior to CAR T-cell therapy may stratify risk.
- Long-term hematologic and oncologic surveillance is warranted.

SPM - a Metanalysis

5,517 patients receiving CAR T for B-cell malignancies (LNH and MM) SPMs categorized as hematologic, solid, non-melanoma skin, or indeterminate.

Incidence & Distribution

Overall incidence: ≈ 5.8 % (median follow-up ≈ 21.7 months).

Distribution (pooled data):

- Hematologic ≈ 37 % (mainly MDS/AML)
- Solid tumors ≈ 27 %
- Non-melanoma skin ≈ > 25 %

Longer f-up, higer incidence (p=0,04)

Skin cancers: mostly SCC and BCC (rare melanoma cases).

Solid tumors: lung (NSCLC/SCLC), prostate, breast, bladder, thyroid, others=> incidence comparable to the rest of the population.

Risk Factors (univariate analyses)

Age = strongest risk factor (HR \sim 1.05 per year).

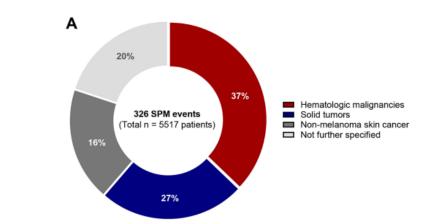
Patients < 65 y had significantly lower risk of SPMs.

NRM due to second malignancies = 7,8%

No difference in CAR T product but higer incidence in higer dose LD regimens (not significant).

No difference of SPM in CAR T-cells arm vs SOC arm in randomized studies.

SPM - a Metanalysis


SPM development appears multifactorial:

- Prior chemo/radiotherapy and cumulative genotoxic stress.
- Pre-existing clonal hematopoiesis (CHIP) (e.g., TP53 mutations) may predispose.
- No firm evidence that CAR transgene insertion causes SPMs, though vigilance is needed.

T-cell malignancies:

Only 5 cases of T-cell malignancy were described, accounting for just 4.1% of all hematological SPMs and 1.5% of all SPMs.

= 0.09% (95% CI 0.04%–0.2%)= 5 cases: 3 were tested for the presence of CAR transgene, with only 1 being classified as positive in a preliminary report.

Quality of Life Issues - Work & Reintegration

- Physical: fatigue, pain, cognitive impairment
- Psychological: anxiety, depression, sleep disorders
- Social: family/sexual health, caregiver stress
- Fertility: preservation should be discussed

- Higher unemployment, disability after CAR-T
- Return to work is often slow & limited
- Support: adapted schedules, pre-return visits, social aid

New healthcare figures

Collaboration: hematologists, ID specialists, psychologists, fertility experts, Social workers, GPs, community networks

+ new figures => APN= Advanced Practice Nurse

A state-certified nurse with at least 3 years of professional experience who has completed a master's level university program.

• Different Specialization options: Oncology and Hemato-oncology/Psychiatry and Mental Health/Emergency Care/Stable Chronic Diseases/ Chronic Kidney Disease, Dialysis, and Kidney Transplantation.

Missions:

- Ethical Decision-Making applying professional ethics to complex clinical situations.
- •Collaboration working effectively within multidisciplinary teams.
- •Leadership promoting innovation and quality in healthcare practices.
- Expertise and Coaching providing clinical expertise, guidance, and mentorship.
- •Consultation offering specialized advice for patient management and care pathways.
- Research and Evidence-Based Practice integrating research findings into clinical practice to improve patient outcomes.

Conclusions

- •Long-term follow-up is essential after CAR-T therapy to monitor relapse, late toxicities, infections, and secondary malignancies.
- Cardiac and infectious surveillance should be systematically integrated into CAR-T pathways.
- •Non-relapse mortality is increasingly linked to infections and cardiovascular events highlighting the need for proactive prevention and multidisciplinary care.
- **Predictive tools** (e.g., CAR-HEMATOTOX, E:T ratio) can help identify patients at risk of poor outcomes or prolonged cytopenias.
- Psychosocial and quality-of-life issues require structured support, including reintegration and fertility counseling.
- •New professional roles (e.g., Advanced Practice Nurses) are key to ensuring continuity, coordination, and patient-centered care.
- Future directions: harmonize long-term follow-up protocols, refine risk stratification, and integrate real-world data to optimize survivorship.

Thanks!

Departments of Lymphoma and Acute Leukemia Apheresis

N. Parquet, A. Brignier, D. Réa

Cell therapy

J. Larghero, M Mebarki

Immunology

S. Caillat-Zucman

ICU

S. Valade, E. Azoulay, M. Darmon

Neurology

R. Ursu

Infectious diseases

M. Lafaurie, B. Denis

Microbiology

J. LeGoff

Biostatistics

S. Chevret

Imagery

E.de Kerviler, L. Vercellino

Pathologist

V. Meignin

Molecular Biologists

J. Lehmann- Che, J. Champ

Pharmacy

R. de Jorna, G Cohet, I. Madelaine, A Mordohay

Lymphoma Team

Pr Catherine Thieblemont

Caterina Cristinelli Agathe Vély Come Bommier Christèle Le Gouill Mohammad Sabbah Eugenio Galli Raphael Lievin Michele Clerico

Federico Erbella

Ilenia De Bernardis Matilde Paluzzi Maxime Berquier Liwa Ta Guillaume David Julien Periz Nurses Paramedical team

roberta.diblasi@aphp.fr